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The effects of radiative transfer on turbulent flow 
of a stratified fluid 

By A. A. TOWNSEKD 
EmmanzieI College, Cambridge 

(Rereiced 16 ya'aliuary 1958) 

SUMMARY 
Assuming local thermodynamic equilibrium in the fluid, an 

expression is derived for the rate of destruction of the mean 
square of the temperature fluctuations by radiative transfer, of 
heat. This takes a particularly simple form (a) if the fluid is 
effectively transparent over distances equal to the scale of the 
turbulent motion, when the effect appears as a decay time for 
temperature fluctuations from the mean, and (b )  if the fluid is 
effectively opaque, when the effect is of an increased conductivity 
due to radiation. A theory of the interaction of the temperature 
and velocity fields developed in a previous paper shows that, if 
the radiative effects are relatively weak, a sudden collapse of the 
turbulent motion occurs while the flux Richardson number is 
still less than one. If the radiative effects are strong, the turbulent 
intensity approaches zero as the flux Richardson number 
approaches one. The  effects of radiation are always to increase 
the critical value of the ordinary Richardson number. Criteria 
for fully turbulent motion of an unrestricted flow are given in 
terms of the gradients of mean velocity and mean temperature 
and of the rate of radiative cooling. The  relevance of these 
calculations to motions of the atmosphere is briefly discussed. 

1. INTRODUCTION 
I n  the past decade, evidence that the upper atmosphere between seventy 

and one hundred kilometres above sea-level may be in turbulent motion 
has been accumulating. Most of the evidence is indirect and based on the 
irregular fading of radio echoes from the ionosphere (e.g. Briggs, Phillips 
& Shinn 1950), but Liller & Whipple (1954, Vol. 1, p. 112) have made 
observations of luminous meteor trails which show the existence of irregular 
velocity gradients resembling closely those found in turbulent flows. T h e  
nearly constant composition of the atmosphere from sea-level to these 
heights also shows that mixing on the molar scale must occur sufficiently 
frequently to counteract diffusive separation of the atmospheric components, 
and these mixing motions might be turbulent motions. 
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As most of this evidence of turbulent motion is indirect, it is useful to 
ask whether our present knowledge of turbulence would lead us to expect 
turbulent flow with the gradients of mean velocity and temperature occurring 
in this region. The  criterion for turbulent motion of air of sea-level density 
is usually expressed as a critical value of the Richardson number and, 
although there is considerable disagreement over the critical value, a simple 
application of this criterion to the upper atmosphere makes turbulent 
motion appear very unlikely*. However, the derivation of this criterion 
neglects radiative transfer of heat, a process which is known to dominate 
the heat balance in the upper atmosphere, and its inclusion will cause a 
reduction in the magnitude of the buoyancy forces which 'are responsible 
for the inhibition of turbulent motion. I n  general, radiative transfer tends 
to destroy the effects of density stratification caused by temperature gradients 
as Goody (1956) has shown in his investigation of cellular convection 
between parallel horizontal planes. The  purpose of this paper is to discuss 
the turbulent motion in a stratified fluid with appreciable radiative transfer 
of heat using a similar analysis to that used by the author in a previous 
discussion of stratified flow with negligible radiative transfer, and to derive 
criteria for the maintenance of turbulent motion. 

2. TURBULENT TRANSFER RATES IN STRATIFIED FLOW 

I n  a recent paper (Townsend 1958), the interactions between the fields 
of velocity and temperature in a stratified flow were considered, and relations 
were found between the levels of the turbulent fluctuations and transport 
rates and the gradients of mean velocity and mean temperature. These 
relations form the basis of the present paper but, before quoting them, it 
may be useful to set out briefly the steps in their derivation. 

We consider the steady flow of a nearly perfect gas, for example air 
containing only small proportions of water-vapour, carbon dioxide, ozone, 
etc., with velocity variations small compared with the local velocity of sound, 
with a length scale small compared with the scale height of the atmosphere, 
with temperature variations small compared with the absolute temperature, 
and unaffected by the rotation of the earth. Without serious loss of 
generality, we may suppose the mean flow to be nearly unidirectional and 
horizontal with an appreciable gradient only in the vertical direction, e.g. a 
horizontal mixing layer between two streams, and describe the flow in the 
usual coordinate system with Ox in the horizontal direction of flow and 
with Ox vertically upward. Then, 

U, W are the components of the mean velocity parallel to Ox, Ox 
respectively, 

u,  u, w are the components of the velocity fluctuation parallel to Ox, 
Oy, Ox respectively, 

T is the mean absolute temperature, 

*For  example, for a zero lapse rate and a wind shear of 10 metre sec-l km-l 
the  Richardson number is 3.5. 
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8 
v is the kinematic viscosity, 
K 

p is the mean density, 

cr, 
g 

is the local temperature fluctuation, 

is the thermometric conductivity (heat diffusivity), 

is the specific heat at constant pressure, 
is the downward acceleration due to gravity. 

T o  the approximation implied by the restrictions set out above, the 
equation for the kinetic energy of the turbulent velocity fluctuations* is 

- 
a(i?) - au a(gq2) + w 

(2.1) 

+uw- +u---- 
at az ax 

where q2 = u2 + v2 + w2 and E is the rate at which turbulent kinetic energy is 
being converted to heat by the action of viscosity. A second equation of 
physical importance is the equation for the mean square of the temperature 
fluctuation. It is 

a ( & @ )  a 
at ( az t) ax ax az + - (48%) = - /?$, 

a($@) - aT a(@) 
+8w - + -  + U -  +w- 

(2.2) 
where -/3@ = =(pcp)-l and &' is the net rate of gain of heat per unit 
volume by .radiative exchange. These two equations are, respectively, 
direct deductions from the equations of motion and from the equation 
for the internal energy (heat equation). 

To simplify the form of these equations, we make use of the observation 
that, in free turbulent flows remote from solid boundaries, there is a sharply 
defined surface separating turbulent fluid from the surrounding undisturbed 
fluid and that the turbulent fluid is remarkably homogeneous in intensity 
and scale over any section of the flow (Townsend 1956). Th '  is means 
that there is a physical meaning in using averaged values of the turbulent 
intensity and of the mean square temperature fluctuation, defined as 

where D is the mean vertical extent of the fully turbulent fluid. 
equations (2.1) and (2.2) are averaged in this way, they become 

If 

and 
a ($us) = ~8828--$, 

where all the quantities are to be understood as suitably averaged values. 

* In a steady flow, the time derivatives of equations (2.1) and (2.2) are zero. They 
are included to make clearer the meaning of the equations. 
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We also neglect the terms representing gain or loss through advection,. 
i.e. a/ax(&U?) and a/ax($U@), and arrive at the comparatively simple 
equations, I , ,  

It will be noticed that the radiative properties of the fluid do not enter 
directly into the equations for the turbulent energy and the convective heat 
transfer enters only through the buoyancy term (g/T)Bw. It is a plausible 
assumption that the general nature of the turbulent motion, i.e. its 
geometrical properties but not its intensity or scale, depends only on the 
relative magnitude of the buoyancy term, that is, on the flux Richardson 
number 

(2.7)' 

which is the ratio of the rate of loss of energy through working against 
buoyancy forces to the generation by working against Reynolds stresses. 
Since energy dissipation is essentially positive, the flux Richardson number 
must always be less than one. 

The  equation for the mean square temperature fluctuation (2.6) is a 
relation between the velocity field and the temperature field produced by 
its interaction with a gradient of mean temperature. Appreciable radiative 
heat transfer leads to added destruction of temperature fluctuations from the 
mean, to a lower mean square temperature fluctuation and to a lower absolute 
value of the convective heat transfer, Bw. Whether the gradient of potential 
temperature is positive or negative (stable or unstable to convective 
disturbances), the effect of radiative heat transfer is to reduce convective 
heat transfer in a given velocity field and mean temperature gradient and 
so to reduce the contribution (negative or positive) to the kinetic energy 
of the motion. If the flow is convectively unstable, radiative transfer reduces 
the instability as Goody (1956) found in his investigation of the effect of 
radiative transfer on convective instability between parallel horizontal 
planes. If the flow is stable, radiative transfer reduces the stability. Indeed, 
if radiative transfer were infinitely rapid, no motion of the fluid could cause 
any departure of local temperature from the mean value appropriate to the 
position in the flow and no buoyancy forces could be generated. 

Equations (2.5) and (2.6) contain terms representing the rate at which 
viscosity converts turbulent kinetic energy to heat and the rate at which 
conductivity destroys temperature fluctuations from the mean. I n  fully 
turbulent flows, these rates are known to be independent of the actual values 
of the viscosity and the conductivity, and are determined by the large-scale 
characteristics of the turbulent motion, that is, by the intensity and scale 



Effects of radiative transfer on turbulent $ow 365 

,of the motion (Townsend 1956). This may be expressed by writing these 
rates as 

= w2 3 / 2 ~ - - 1  (2.8 ) 

and - K g v 2 g  = ggyW"112L-1 9 ,  (2.9) 

(-1 E - -- 

where L,,  L,  are defined by these equations but are known to be nearly 
equal to the integral scale of the turbulence*. 

It is now possible to obtain solutions of equations (2.5) and (2.6), 
expressing the convective heat transport and the Reynolds stress in terms 
of the gradients of mean velocity and mean temperature, the logarithmic 
cooling rate by radiation P, the dissipation lengths L,  and L,, and the two 
correlation factors, 

(2.10) 

The most useful form relates the ordinary Richardson number 

to the flux Richardson number, and is 

where 

R,= F[l- (1-12* k2RiY'21 , 

H =  1 +  3L, P 
k, L,  laU/az/ * 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

I t  should be emphasized that the validity of equation (2.13) depends 
on only one assumption, that the effects of mean flow advection can be 
ignored, and that the quantities occurring in it are not local values but 
values averaged over a whole section of the flow. Its physical importance 
.depends on the meaning given to these average values by the effective 
homogeneity of the flow and on the making of plausible assumptions about 
-the variations of the non-dimensional ratios, k,, k, and LJL,, with stability. 

3. CONDITIONS FOR THE MAINTENANCE OF TURBULENT MOTION 

From equation (2.13), we see that real values of the flux Richardson 
number are only possible if 

H2k, L,  
12k, L, 

Ri< -. 

* The factor 4 in (2.9) appears since, in any flow, the ratios of the rates of destruction 
t o  the respective intensities are roughly equal, i.e. 

- ~ 8 v 2 8 ,  E . E ~- - - = = -  
82 ' 42 . 3 2  
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Assuming that k,, k ,  and LJL,  do not vary greatly with stability of the flow 
(reasons for supposing this in  fully turbulent flow are given in Townsend 
1958), this is equivalent to  

Rf< 4H. ( 3 4  
These are limits set by non-existence of physical solutions of equations (2.5) 
and (2 .6)  for Richardson numbers which do not satisfy them, and are 
additional to the limit set by the energy equation alone, 

Rf< 1. ( 3 . 3 )  

For weak radiative transfer ( H  < 2, f l  < Qk,(L,/L,)laUjax]), the limit 
expressed by ( 3 . 1 )  and (3 .2)  applies, while for strong radiative transfer, 
the limit is given by equation ( 3 . 3 ) .  

The  physical situation that leads to a double restriction on the possibility 
of turbulent flow may be made clearer by considering the equation for the 
turbulent kinetic energy 

and, in particular, the variation of the terms with assumed turbulent 
intensity for given gradients of mean velocity and mean temperature. 
An intermediate step in the algebra leading to  the relation between the 
two forms of the Richardson number is (Townsend 1958) 

- - 3 k 2 , L , ( ~ ) 1 ~ 2 ( a T / a x + g / c p )  
6~ = 

1 + 3flL,(W2)-1/2 
, (3.5 1 

and SO the energy equation may be written as 

Consider now the way in which the two terms on the right, representing 
work done against buoyancy forces and loss of energy by dissipative processes, 
vary with turbulent intensity. This is done most conveniently by considering 
the ratio of their sum to the term on the left, the rate of production of 
turbulent energy by working against the Reynolds stresses. I n  figure 1,  
the variation of these ratios with (w")1/2/k, L,jaU/azl) is shown for negligible 
radiative transfer and various values of the Richardson number, Ri. If a 
stable value of the turbulent intensity exists, it must satisfy the energy 
equation, i.e. the sum of the ratios must equal one, and the total rate of 
energy loss must increase with turbulent intensity. It is clear from the 
diagram (i) that the sum of the ratios always has a minimum value, (ii) that 
the minimum value will exceed one in strongly stable flows, (iii) that the 
turbulent intensity does not become zero as the critical condition is 
approached, and (iv) that, in the critical flow, the flux Richardson number 
(which is the ratio of the work done against buoyancy forces to the energy 
production by shear) is less than one. This behaviour i s  typical of flows 
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with weak radiative transfer and the condition (3.1) for turbulent flow is 
simply the condition that the minimum value of the sum of the ratios should 
be one or less. 

I n  figure 2, the sum of the ratios is shown as a function of turbulent 
intensity for critical conditions and increasing radiative transfer. T h e  

0 

n 
._ * 

C 

Figure 1. Variation with assumed turbulent intensity of the ratio of the total rate 
of energy !oss to the rate of gain from the mean flow (no radiative transfer). 
(The numbers opposite the curves are values of (I,@ kg/Lu k,2)Ri, which in 
the text is equated with the Richardson number. The  marked points indicate 
the stable configuration (if any) of the turbulent motion for the Richardson 
number concerned.) 

position of the minimum moves to smaller values of the intensity and 
becomes zero when /3 = $ktl(LJL8)I a Ujaxl. For more intense transfer, 
the sum of the ratios always increases with turbulent intensity and the 
minimum possible value occurs at zero intensity. 
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The alternative conditions correspond with the suppression of the 
turbulent motion in two distinct ways. In conditions of weak radiative 
transfer, loss of energy through buoyancy forces is the dominant dissipative 
process for low values of the turbulent intensity as ordinary turbulent 
dissipation is for high values. I n  the critical condition, the intensity is 
neither so low that buoyancy forces could destroy the motion nor so high 

0 1 

Figure 2. Variation with assumed turbulent intensity of the ratio of the total rate 
of energy loss to the rate of gain from the mean flow for the critical condition 
with various amounts of radiative transfer. (The marked points indicate the 
configuration and intensity of the turbulence in the critical condition for the 
various values of the radiation parameter H.) 

that turbulent dissipation would, but has an intermediate value. As the 
limit is passed a sudden collapse of the turbulent motion will occur. Since 
the effect of radiative transfer is to destroy temperature fluctuations and to 
reduce buoyancy effects, the loss of energy through buoyancy forces is 
reduced, particularly at low intensities, and for sufficiently intense radiative 



EfSects of radiative transfer on turbulent $ow 3 69 

This corresponds with 

The  criterion for the maintenance of turbulent motion thus takes two 

transfer the critical condition has zero intensity. 
a condition of ‘just no turbulence ’. 

forms, depending on the magnitude of H. The first is 

H2kz L ,  
12kz L, 

(R.) . = - (RJcl.it. = w, I cnt.  

for H < 2 or 

The  second, appropriate to conditions of strong radiative transfer, is 

for H > 2 or 

Obviously the Richardson number is not a convenient parameter for 
describing flows with strong radiative transfer, and these last conditions 
are better expressed as 

for 

4. THE EFFECT OF RADIATIVE HEAT TRANSFER ON 

THE TEMPERATURE FLUCTUATIONS 

In  the. previous sections, the quantity H (defined by equation (2 .11))  
appears prominently and it is a measure of the ratio of the logarithmic 
rate of cooling by radiation /3 (equation ( 2 . 4 ) )  to the mean rate of shear. 
T o  compute 8, we need to know something about the dependence of 2, 
the net rate of heat gain per unit volume by radiative transfer, on the 
temperature distribution in the fluid. I n  general, 2 is a complicated 
expression depending on the difference between the temperature radiation 
from the fluid volume and its rate of absorption of radiation from other 
parts of the fluid and from outside the fluid, but our present concern is only 
with fluctuations of temperature and so we do not need to know the nature 
or quantity of the constant radiation from outside the flow. To calculate 
the radiation from other parts of the fluid, we assume that the gas is 
everywhere close to thermodynamic equilibrium and that we may neglect 
the effects of unmodified scattering. 

F.M. 2 A  
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The equation of radiative transfer is (Chandrasekhar 1950) 

(4.1)) 

where k ,  is the mass absorption coefficient for radiation of frequency 11, 
I ,  is the specific intensity, i.e. the flux of radiant energy per unit solid angle 
per unit frequency interval, r is distance along the direction of propagation, 
and B , ( T )  is the Planck function for black-body emission. This equation 
may be integrated to give the intensity at a point as 

I ,  = Im B,(Tr)e-kyPrk,p dr, 
n 

(4.2)’ 

where r is the distance between the point concerned and the moving point 
of integration, and the density is assumed to be substantially constant. 
The  total intensity from all parts of the fluid is then 

(4.3 ). k 
Y2 

B,(Tr)e-kvPT 2 dV(r),  

where the integrals extend respectively over all solid angles and all the 
fluid, the subscript Y denotes values at the element of integration, and V ( r )  
is an element of volume at the position r .  From this it follows that 
absorption of temperature radiation from the surrounding fluid proceeds 
at a rate per unit mass of 

or, more concisely, of 

(4.4) 

where 

is the emissivity of the fluid. Heat radiation from an element of temperature 
T proceeds at a rate 

where 
4E( T)aT4, (4.5)  

Both E(T,pr) and k ( T )  depend on temperature, but if the larger values 
of k, are distributed fairly evenly within the range of the Planck function, 
B,( T ) ,  both will be slowly varying functions of temperature. 

Neglecting the variations of E( T ,  P Y )  and &( T )  with temperature, the 
net rate of temperature rise by internal radiative transfer is 

- 2? 1 [ (TT+Or)4-(T+O)4]  - p dV(r) ,  
ncp r2 

(4.6). 
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where dashes denote differentiation of E(pr) with respect to pr (note that 
E”(pr)  is essentially negative). 

If the expression (4.6) is multiplied by the temperature fluctuation and 
the mean values taken, the result is the radiation term in equation (2.4) 
which represents the rate of destruction of $3 by radiative transfer. 
Assuming that I%] < T, this gives 

- m a -p%2 = - = - - 1 [ (TT+ %,)4- (T+%)*]O p dV(r) .  (4.7) 
PCP 77% Y2 

It is probable that the temperature covariance %(x)%(x + r )  is nearly 
symmetrical about a plane perpendicular to the gradient of mean temperature, 
and then 

indicating that the destruction of 33 by radiative transfer takes place at 
a rate whose maximum value in a fluid of given properties is 

This maximum value occurs when the scale of the temperature fluctuations 
is so small that @ becomes negligible before the transmission is sensibly 
different from one”. Irl general, the rate of destruction of ;-@is 

where 

(4.10) - aT3 - @ = 16Fk - %2 

-5) 
1 68, E”(p7) 
477 

F =  - -1 (1- z) rf dV(r)  

(4.11) 

-- 
Defining the average value of QQ,/Q2 over a spherical shell of radius r as 

(4.12) 

(dS(r) is an area element of the spherical shell), we find that 

F = 1 + Q ( r )  ‘7 p dr, (4.13) 
( 1  

showing how F depends on the relative extents of the temperature corre- 
lation function Q ( r )  and the transmission coefficient II ( p r )  = E”(pr)/E”(O). 

For two limiting conditions, the factor F may be expressed more simply. 
( a )  If the fluid is effectively transparent, i.e. if 

* In this event, the fluid is effectively transparent, radiation from other parts of 
the fluid is not absorbed, and equation (4.9) is a direct consequence of (4.5). 

2 A 2  
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then 

(4.14) 

( b )  If the fluid is nearly opaque, i.e. if 
- m  - m  

only small values of Y for which Q ( r )  is nearly one contribute to the integral. 
For these values, 

and so 

(4.15) 

m 
M 3  = 1 u211(u) du. 

where 

I t  may be noticed that the actual rate of destruction of temperature 
fluctuations by radiative transfer is 

0 

(3, - 8aT3E”(0) M 3  

3P2% 

equivalent to an additional ‘ radiation’ heat diffusivity of 

8aT3E”(0) M3. k ,  = - 
3P2CP 

(4.16) 

‘This was the same diffusivity as was found by Goody (1956). 

5 .  APPLICATION TO MOTION IN THE ATMOSPHERE 

This analysis is expected to apply to flows at a sufficient distance from 
,solid boundaries to be substantially unaffected by their presence, a condition 
which would be satisfied in the atmosphere and outside the earth’s boundary 
layer. Within the boundary layer, the theory might be capable of repre- 
senting the order of magnitude of the effect of radiation on the turbulent 
motion, but the essential inhomogeneity of the motion would make definition 
of flow averages very uncertain. 

The  logarithmic cooling rate, whose ratio to the mean velocity gradient 
determines the influence of radiative transfer on the motion, is a function 
of the scale of the temperature fluctuations as well as the radiative properties 
of the atmosphere unless the atmosphere is effectively transparent to 
temperature radiation of the gas. The condition for this is that the 
absorption length 

L = 
?) 

H ( p )  dr = 1 / p  jm k,B,  d v / j m  k2yBy dv (5.1) 
0 IJ 0 
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should be large compared with the scale of the temperature fluctuations, 
which must be roughly equal to the scale of the mean velocity variation or 
the vertical extent of the flow. For a line absorption spectrum, 

where k,,, is the maximum value of the absorption coefficient and may be 
very much larger than k ,  the ratio depending on the ratio of line spacing to 
line width. For air of sea-level density containing 2"/n by volume of 
water-vapour, - 

k L + 400 - cm, 
k m  

and only motions of very small scale could be described by the ' transparent ' 
approximation. For air of density g m ~ m - ~ ,  which occurs at heights 
around 70 km, containing 2-5 x by volume of carbon dioxide, 

E 
k7rl 

L + 104-km, 

and a possibility of using the transparent approximation exists. 

(1956), the mean absorption coefficient at 300" K is 
From information given by Elsasser (1942) and by Curtis & Goody 

E = (90q, + 15Oq, + 215q,) gm-l cm2 (5.2), 

where qu, is the proportion by volume of water-vapour, q, is the proportion 
by volume of carbon dioxide, and qt is the proportion by volume of ozone. 
Using equation (4. lo), the logarithmic cooling rate in transparent conditions 
at 300" K is 

p = (0-21q. + 0.35qc + O-Slq,) sec-l. (5.3) 

(The rate at other temperatures can be estimated by neglecting the variation 
of k with temperature and supposing /3 to vary as the cube of the absolute 
temperature.) In  table 1, the gradients of potential temperature, 
aT/& +g/c,, that are just sufficient to allow turbulent motion are listed for 
thrke values of the mean velocity gradient and for four values of the 
logarithmic cooling rate. These values refer to (i) a non-radiating 
atmosphere, (ii) one containing 2.5 x of carbon dioxide, (iii) one con- 
taining 2.5 x lop4 of carbon dioxide and 2 x of water-vapour, (iv) one 
containing 2.5 x of water-vapour, all 
effectively transparent and at 300" K. For the least absorbing atmosphere, 
the critical temperature gradient is very little different from that for a non- 
absorbing atmosphere, but for the most absorbing atmosphere, the critical 
gradient must be an order of magnitude greater. The  purpose of the table 
is to show the order of magnitude of radiation effects in air of various 
compositions and not to assert that air of these compositions exists at 
great heights. The  relevance (or otherwise) of these assumed compositions 
may be explained very briefly. The  assumed content of carbon dioxide is 

of carbon dioxide and 2 x 
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about that known to exist in the stratosphere, and the two assumed contents 
of water-vapour have no more justification than (i) that these concentrations 
could exist without condensation at an air density of lo-’ gm ~ m - ~  and any 
likely temperature, (ii) that the occasional presence of water-vapour in 
significant quantities may be indicated by the occurrence of noctilucent 
clouds at great heights, and (iii) that these compositions lead to values 
of /3 suitably spaced for a table intended to be illustrative rather than 
definitive. 

I Critical gradients of potential temperature (deg. km-’) 

0 
0.9 x 10-4 
5.1 x 10-4 
4.3 x 10-3 

Table 1. 

The failure of the transparent approximation in the lower atmosphere 
makes it desirable to obtain an estimate of the logarithmic cooling rate for 
intermediate conditions between transparency and opacity. The  general 
expression for the factor F (equation (4.13)) may be integrated by parts 
to give 

showing that F is the mean value of E ’ ( p ) / E ,  taken over all values of r 
with a weighting factor dQ(r)/dr.  It is characteristic of line absorption 
that the initial, very rapid decrease of E’(pr)  is followed by an extended 
region of very slow decrease, while the weighting factor d Q ( r ) / d ~  is small 
near Y = 0. It follows that if we define a length L, by 

F = E’(pL,)/L, (5.5 ) 
it will be roughly equal to the scale of the temperature fluctuations. On 
this basis, critical gradients of potential temperature have been calculated 
for flow in air containing Z0/, of water-vapour at sea-level density for a 
range of scales and velocity gradients (table 2). For this atmospheric 
composition, 

using results quoted by Elsasser (1942). Except for the largest scale of 1 km, 
substantial effects of radiative transfer are predicted for this composition 
and mean velocity gradients of the kind that might occur at heights over 
20 metres. 

F = 3*7Ls-1/2 (L, in cm) (5.6) 
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0.49 

0.171 

0.092 

p = 0  

0.98 

0.445 

0.305 

I,, = 102cm 
F = 0.37 

L ,  = lo3 cm 
F = 0.12 

- 

L,  = 104cm 
F = 0,037 

L,  = 105cm 
F = 0.012 

Critical gradients of potential temperature (deg. h - l )  

- 

0.064 I 0.255 

0,072 0.270 

I 

Table 2. 

1.02 

2.23 

1.37 

1.12 

1.05 
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